Sharp square-function inequalities for conditionally symmetric martingales
نویسندگان
چکیده
منابع مشابه
Sharp Maximal Inequalities for Conditionally Symmetric Martingales and Brownian Motion
Let B = {Bt)t>0 be a standard Brownian motion. For c > 0, k > 0 , let T(c, k) = inî{t > 0: maxs<í Bs cBt > k} , T"(c,k)= inf{r>0: max^, \BS\ c\B,\ > k} . We show that for c > 0 and k > 0, both T(c, k) and T*{c, k) axe finite almost everywhere. Moreover, T(c, k) and T*(c, k) e L if and only if c < pKp 1) for p > 1 , and for all c > 0 when p < 1 . These results have analogues for simple random wa...
متن کاملSharp Oracle Inequalities for Square Root Regularization
We study a set of regularization methods for high-dimensional linear regression models. These penalized estimators have the square root of the residual sum of squared errors as loss function, and any weakly decomposable norm as penalty function. This fit measure is chosen because of its property that the estimator does not depend on the unknown standard deviation of the noise. On the other hand...
متن کاملSharp inequalities for tangent function with applications
In the article, we present new bounds for the function [Formula: see text] on the interval [Formula: see text] and find sharp estimations for the Sine integral and the Catalan constant based on a new monotonicity criterion for the quotient of power series, which refine the Redheffer and Becker-Stark type inequalities for tangent function.
متن کاملTightened Exponential Bounds for Discrete Time, Conditionally Symmetric Martingales with Bounded Jumps
This letter derives some new exponential bounds for discrete time, real valued, conditionally symmetric martingales with bounded jumps. The new bounds are extended to conditionally symmetric sub/ supermartingales, and are compared to some existing bounds. AMS 2000 subject classifications: 60F10, 60G40, 60G42.
متن کاملConditioned Square Functions for Non-commutative Martingales
Abstract. We prove a weak-type (1,1) inequality involving conditioned square functions of martingales in non-commutative L-spaces associated with finite von Neumann algebras. As application, we determine the optimal orders for the best constants in the non-commutative Burkholder/Rosenthal inequalities from Ann. Probab. 31 (2003), 948-995. We also discuss BMO-norms of sums of non commuting order...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1991
ISSN: 0002-9947,1088-6850
DOI: 10.1090/s0002-9947-1991-1018577-3